Note on the Commercial Property Price Index Forecasts

October 2019

Evan Karson

Moody's Analytics has added six new U.S. commercial property price indexes to its global macroeconomic model. The historical data were estimated by Moody's Analytics using sales transactions. A whitepaper accompanies the release of these proprietary CPPIs that describes the construction of the indexes in great detail. While we have not removed the RCA CPPIs from the global model, these new proprietary indexes are very much intended to be their replacement. We have not received historical data updates for the RCA series since June of 2017; they have been forecasted ever since. The Moody's CPPIs have a similar historical pattern to the RCA series and will be updated continuously by Moody's Analytics. Lastly, all linkages between the RCA series and the rest of the model have been severed. Series that previously referenced RCA regressors now reference Moody's CPPI variables instead.

Commercial property prices are determined in large part by models of discounted future cash flow s. As such, they depend on commercial rents and interest rates. Rents, in turn, are a function of vacancy rates for the particular property type. And vacancy rates are a function of absorption and supply. Absorption is a function of the demand side of the economy. Variables such as employment grow th, the unemployment rate, retail sales, and income grow th are all positively correlated with absorption. The supply side is influenced by factors such as the rate of inflation, grow th in construction costs, and the vacancy rate. If construction costs are growing at a slow rate or if the office market is exceptionally tight, how ever, commercial developers would be expected to bring more building supply online. There are six new CPPI Indexes:

- 1. FCPPA PTI.IUSA Apartments
- 2. FCPPINDI.IUSA Industrial
- 3. FCPPOFFI.IUSA Office
- 4. FCPPRETI.IUSA Retail
- 5. FCPPCOMI.IUSA Commercial
- 6. FCPPI.IUSA Total

In terms of the apartment CPPI, we had median asking rents and the rental vacancy rate available at our disposal. These terms represent the intersection of the supply and demand sides of the multi-family market. As such, we used these two variables, combined with the BAA spread with the 10-year Treasury to forecast apartment prices. The interest rate term was used because, as mentioned earlier, future cash flows are discounted.

We did not have vacancy rates or median asking rent for the industrial, office or retail sectors, how ever. As such, we used reduced-form models to forecast these time series. For instance, the industrial property price index relies on the unemployment rate and manufacturing GDP to proxy for the rate of industrial real estate absorption. We include the CPI index on the left hand side of the equation to capture supply side constraints. And finally, we use a corporate spread to discount future cash flows in the same way that we do for apartments.

For the office CPPI, we also don't have vacancy rates or rents. We use office-using employment instead of manufacturing GDP to proxy office absorption. We retain the unemployment rate. We also use office construction put in place to proxy the supply side of the office market. And lastly, we use the same corporate spread measure.

The retail CPPI uses retail employment, the unemployment rate, and a corporate spread measure in the absence of retail rents and vacancy rates.

The commercial measure does not include apartments, and thus is a function of the retail, industrial and office components. Total is then a function of the commercial and apartment CPPIs. All dependent variables are non-stationary if they are not transformed. We used differenced log transformations to ensure stationarity in our regressions.

Equation specifications

Dependent Variable: DLOG(FCPPA PTI_US) Method: Least Squares Date: 09/25/19 Time: 16:43 Sample (adjusted): 2002Q2 2019Q1 Included observations: 68 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLOG(@MOVAV(FHRENTQ_US,4)) D(@MOVAV(FHVACRQ_US,4)) D(@MOVAV(FRBAAC_US-	0.862061 -0.116037	0.289443 0.026114	2.978341 -4.443441	0.0041 0.0000
FRGT10Y_US,4))	-0.064366	0.017178	-3.747009	0.0004
- R-squared	0.272480	Mean dependent var		0.013397
Adjusted R-squared	0.250095	S.D. dependent var		0.037277
S.E. of regression	0.032281	Akaike info criterion		-3.985563
Sum squared resid	0.067734	Schw arz criterie	on	-3.887643
Log likelihood	138.5091	Hannan-Quinn	criter.	-3.946764
Durbin-Watson stat	1.718627			

Mnemonics referenced in the above equation, for example FET, can be defined using the Mnemonic 411 feature on DataBuffet. Please contact Help@economy.com for assistance.

Dependent Variable: DLOG(FCPPINDI_US/FCPIU_US) Method: Least Squares Date: 09/25/19 Time: 16:58 Sample (adjusted): 2002Q2 2019Q1 Included observations: 68 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(@MOVAV(FRBAAC_US- FRGT10Y_US,2))	-0.019876	0.019376	-1.025836	0.3088
DLOG(@MOVAV(FGDPMF\$Q_US(-1),4))	0.575485	0.601182	0.957256	0.3420
D(FLBR_US)	-0.042044	0.023244	-1.808841	0.0751
R-squared	0.142230	Mean depender	nt var	0.006486
Adjusted R-squared	0.115837	S.D. dependent var		0.049840
S.E. of regression	0.046864	Akaike info crite	erion	-3.240012
Sum squared resid	0.142756	Schw arz criterie	on	-3.142093
Log likelihood	113.1604	Hannan-Quinn	criter.	-3.201213
Durbin-Watson stat	2.855897			

Mnemonics referenced in the above equation, for example FET, can be defined using the Mnemonic 411 feature on DataBuffet. Please contact Help@economy.com for assistance.

Dependent Variable: DLOG(FCPPOFFI_US/FCPIU_US) Method: Least Squares Date: 09/25/19 Time: 16:42 Sample (adjusted): 2002Q2 2019Q1 Included observations: 68 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLOG(@MOVAV(FEOFC_US(-1),4))	2.269026	1.000152	2.268682	0.0267
D(FLBR_US) D(@MOVAV(FRBAAC_US-	-0.023761	0.022668	-1.048239	0.2985
FRGT10Y_US,4))	-0.032652	0.024118	-1.353850	0.1805
D(@MOVAV(FCPNCOFF_US(-4),4))	-0.002014	0.001978	-1.018627	0.3122
R-squared	0.325538	Mean depender	nt var	0.002868
Adjusted R-squared	0.293922	S.D. dependent	t var	0.038845
S.E. of regression	0.032641	Akaike info crite	erion	-3.949462
Sum squared resid	0.068189	Schw arz criteri	on	-3.818903
Log likelihood	138.2817	Hannan-Quinn	criter.	-3.897730
Durbin-Watson stat	2.235372			

Mnemonics referenced in the above equation, for example FET, can be defined using the Mnemonic 411 feature on DataBuffet. Please contact Help@economy.com for assistance.

Dependent Variable: DLOG(FCPPRETI_US/FCPIU_US) Method: Least Squares Date: 09/25/19 Time: 17:04 Sample (adjusted): 2002Q2 2019Q1 Included observations: 68 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(@MOVAV(FRBAAC_US- FRGT10Y_US,4)) DLOG(@MOVAV(FERT_US,4)) D(FLBR_US)	-0.020692 2.337027 -0.016563	0.021599 1.491711 0.025087	-0.957987 1.566675 -0.660204	0.3416 0.1220 0.5115
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.235190 0.211657 0.030389 0.060028 142.6158 1.893412	Mean depende S.D. dependen Akaike info crit Schw arz criteri Hannan-Quinn	t var erion on	0.004413 0.034226 -4.106346 -4.008426 -4.067547

Mnemonics referenced in the above equation, for example FET, can be defined using the Mnemonic 411 feature on DataBuffet. Please contact Help@economy.com for assistance.

Dependent Variable: DLOG(FCPPCOMI_US) Method: Least Squares Date: 09/25/19 Time: 16:57 Sample (adjusted): 2002Q2 2019Q1 Included observations: 68 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLOG(FCPPOFFI_US) DLOG(FCPPINDI_US) DLOG(FCPPRETI_US)	0.303224 0.123011 0.525873	0.031287 0.022278 0.034712	9.691636 5.521738 15.14972	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.920264 0.917811 0.008541 0.004742 228.9184 2.229286	Mean depender S.D. dependent Akaike info crite Schw arz criterie Hannan-Quinn	var erion on	0.010264 0.029794 -6.644657 -6.546738 -6.605859

Mnemonics referenced in the above equation, for example FET, can be defined using the Mnemonic 411 feature on DataBuffet. Please contact Help@economy.com for assistance.

Dependent Variable: DLOG(FCPPI_US) Method: Least Squares Date: 09/25/19 Time: 17:33 Sample (adjusted): 2002Q2 2019Q1 Included observations: 68 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLOG(FCPPA PTI_US) DLOG(FCPPOFFI_US) DLOG(FCPPINDI_US) DLOG(FCPPRETI_US)	0.362538 0.201733 0.117315 0.281775	0.036638 0.035343 0.025032 0.042141	9.895222 5.707902 4.686647 6.686430	0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.902888 0.898336 0.009487 0.005760 222.3067 2.458742	Mean depender S.D. dependent Akaike info crite Schw arz criterie Hannan-Quinn	var erion on	0.010020 0.029754 -6.420784 -6.290225 -6.369053

Mnemonics referenced in the above equation, for example FET, can be defined using the Mnemonic 411 feature on DataBuffet. Please contact Help@economy.com for assistance.